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The synthesis of a functionalized (azido, amino, and hydroxy) 8-oxa-3-azabicyclo[3.2.1]octane frame-
work and its conversion into a protected sugar amino acid and a tricyclic framework is described. The
sequence includes a one-pot Huisgen 1,3-dipolar cycloaddition, with decomposition to an aziridine
and subsequent ring opening by azide. The stereoselectivity observed in the Huisgen cycloaddition reac-
tion is attributed to minimization of allylic strain.

� 2009 Elsevier Ltd. All rights reserved.
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Scheme 1. Synthesis of functionalized scaffold 5 from L-sorbose.
A variety of scaffolds have been investigated in medicinal chem-
istry, including monosaccharides and related compounds.1 The use
of carbohydrate scaffolds in bioactive compound generation has
been a success in part because the inherent pyran or furan frame-
work contains multiple sites (alcohol, amine, and carboxylic acid)
to which pharmacophoric groups can be attached. Polyhydroxylat-
ed piperidines, also known as iminosugars or iminocyclitols, are
analogues of monosaccharides. The use of iminosugars as scaf-
folds2 for bioorganic and medicinal chemistry offers the possibility,
not available to pyranosides, of incorporating a charged hydrogen
bond donor through protonation of the ring nitrogen atom. In addi-
tion, pharmacophoric groups can be grafted to the nitrogen atom.
Iminocyclitols have been of significant interest as glycosidase
inhibitors3 prompting the development of a range of syntheses of
these and their related compounds. Herein we describe the synthe-
sis of a polyfunctionalized bicyclic iminocyclitol from L-sorbose.
The product contains azide, amino, and hydroxy groups that would
facilitate its exploitation in medicinal chemistry.

Recently the intramolecular 1,3-dipolar cycloaddition reac-
tions4 of azides and alkenes (Huisgen reaction)5 were used in a se-
quence of reactions for the synthesis of 1-deoxynojirimycin (DNJ)
and close structural analogues from a sugar lactone percursor.6

As an extension, it was envisaged that the azide–alkene cycloaddi-
tion of substrate 1, obtained from readily available L-sorbose,
would provide access to the protected polyfunctional bicyclic scaf-
fold 5.

As in the DNJ synthesis it was anticipated that an intermediate
(Scheme 1) of the type 2 would be favored as it would minimize
ll rights reserved.
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allylic strain and provide a single triazoline stereoisomer 3. The
intermediate triazoline would be expected to lose nitrogen, possi-
bly giving the aziridine 47 which on reaction with a nucleophile
would give the polyfunctional bicyclic compound 5.

The synthesis of 9 (Scheme 2) began from 7, which was avail-
able from L-sorbose 6 (furanose form) as described previously.8

The regioselective ring opening of the more labile isopropylidene
group was carried out by treatment of 7 with 60% acetic acid at
60 �C for 2 h giving the diol 8 in good yield. With this diol in hand,
the exchange of the primary alcohol with an azide and subsequent
Huisgen reaction9 were next investigated. Diol 8 was thus treated
with thionyl chloride and pyridine in dichloromethane at 0 �C for
2 h giving a cyclic sulfite. This intermediate was treated with ex-
cess sodium azide in DMF at 110 �C. The crystalline bicyclic prod-
uct 9 was isolated in 40% yield; other by-products were not
obtained. The formation of 9 is explained by the cascade sequence
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described in Scheme 1, where, under the reaction conditions, it was
not possible to observe the triazoline or aziridine intermediates.10

Efforts to improve the yield of 9 from the one-pot reaction were
not successful. The X-ray crystal structure of 9 (Fig. 1) confirmed
the structure of the bicyclic compound and the configuration of
the newly generated stereocenter. Removal of the isopropylidene
from 9 was effected using 0.2 M HCl in MeOH to give polyhydroxy-
lated compound 10.

Treatment of 9 with ethyl bromoacetate in THF along with a
catalytic amount of tetrabutylammonium iodide gave 11 (61%),
which can be considered to be a protected sugar amino acid.11 Cat-
alytic hydrogenation of 11 caused reduction of the azide to the
amine which led to spontaneous lactam formation; subsequent re-
moval of the acetonide from the intermediate gave tricyclic deriv-
ative 12 in 58% yield over two steps (Scheme 3).

In summary, iminocyclitols with an ether bridge have been pre-
pared in a concise and stereoselective manner from L-sorbose. The
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Figure 1. ORTEP representation of the X-ray crystal structure of 9. The atomic
displacement parameters are at the 50% level. CCDC 731460.
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one-pot sequence included azide incorporation, Huisgen cycload-
dition, triazoline decomposition, aziridine formation, and its
subsequent reaction with azide. The 8-oxa-3-azabicyclo[3.2.1-
]octanes are of medicinal interest. For example, achiral 8-oxa-3-
azabicyclo[3.2.1]octane12,13 has analgesic and anti-inflammatory
effects in vivo14 and analogues have been prepared.15 The pro-
tected amino acid 10 could have application in peptidomimetic
development.16 Sorbose derivative 9 can be considered a conform-
ationally constrained morpholine derivative17 and is structurally
related to bicyclic alkaloids with nortropane skeletons, which have
been found to have biological activity as glycosidase inhibitors.18

Lactam 12 contains a tricyclic framework.19 A recent analysis of
scaffolds investigated in organic chemistry showed that a small
number of frameworks are found in a large number of all known
compounds.20 The approach described herein using readily avail-
able carbohydrate precursors has potential to be applied to gener-
ating new functional frameworks for organic chemistry.
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